Magma genesis, plate tectonics, and chemical differentiation of the Earth

نویسنده

  • PETER J. WYLLIE
چکیده

Magma genesis, migration, and eruption have played prominent roles in the chemical differentiation of the Earth. Plate tectonics has provided the framework of tectonic environments for different suites of igneous rocks and the dynamic mechanisms for moving masses of rock into melting regions. Petrology is rooted in geophysics. Petrological and geophysical processes are calibrated by the phase equilibria of the materials. The geochemistry of basalts and mantle xenoliths demonstrates that the mantle is heterogeneous. The geochemical reservoirs are related to mantle convection, with interpretation of a mantle layered or stratified or peppered with blobs. Seismic tomography is beginning to reveal the density distribution of the mantle in three dimensions, and together with fluid mechanical models and interpretation of the geoid, closer limits are being placed on mantle convection. Petrological cross sections constructed for various tectonic environments by transferring phase boundaries for source rocks onto assumed thermal structures provide physical frameworks for consideration of magmatic and metasomatic events, with examples being given for basalts, andesites, and granites at ocean-continent convergent plate boundaries, basalts and nephelinites from a thermal plume beneath Hawaii, kimberlites in cratons, nephelinites from continental rifts, and anorogenic granites. The fluid dynamics of rock-melt-vapor systems exerts strong control on igneous processes and chemical differentiation. Unravelling the processes during subduction remains one of the major problems for understanding mantle heterogeneities and the evolution of continents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tectonics of early Earth: Some geodynamic considerations

Today, plate tectonics is the dominant tectonic style on Earth, but in a hotter Earth tectonics may have looked different due to the presence of more melting and associated compositional buoyancy as well as the presence of a weaker mantle and lithosphere. Here we review the geodynamic constraints on plate tectonics and proposed alternatives throughout Earth’s history. Observations suggest a 100...

متن کامل

When and how did plate tectonics begin? Theoretical and empirical considerations

Plate tectonics is the horizontal motion of Earth’s thermal boundary layer (lithosphere) over the convecting mantle (asthenosphere) and is mostly driven by lithosphere sinking in subduction zones. Plate tectonics is an outstanding example of a self organizing, far from equilibrium complex system (SOFFECS), driven by the negative buoyancy of the thermal boundary layer and controlled by dissipati...

متن کامل

The fate of water within Earth and super-Earths and implications for plate tectonics

The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subducti...

متن کامل

Geodynamics and Rate of Volcanism on Massive Earth-like Planets

We provide estimates of volcanism versus time for planets with Earth-like composition and masses 0.25 25 M⊕, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompressi...

متن کامل

The Fate of Water within Earth-like Planets and Implications for the Onset of Plate Tectonics

Introduction: Water is thought to be vital for the development of plate tectonics because it lowers viscosities in the asthenosphere and enables subduction. However, the following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? Here we present models demonstrating that processes associated wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007